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Abstract. Statistically independent equilibrium configurations of interacting systems can 
easily be generated with little computing effort by multigrid coarse-to-fine transforms. The 
very slow long-wavelength motions close to critical points are thereby accelerated by many 
ordersofmagnitude. ‘Thisisdemonstratedwith anovelupdatingalgorithmfromsmall tolarge 
two-dimensional king sys tems specifying effective interactions according to renormalisation 
group considerations, corrected for non-linearities and saturation effects. 

To ensure ergodicity in computer simulations of equilibrium properties, many inde- 
pendent configurations equally distributed over the entire phase space are needed. The 
critical slowing down close to second-order phase transitions (see e.g. Hohenberg 
and Halperin 1977 and Ma 1976) inflates the slowest relaxation scale many orders of 
magnitude relative to those of the system’s fast evolution. To avoid systematic artefacts 
due to correlated configurations located in a small phase subspace, extremely long 
simulation runs with very high computing costs are needed, even with current super- 
computers. To minimise this waste of computer time, new algorithms have beeninvented 
based on physical principles to prevent critical slowing down. One presented by Swend- 
sen and Wang (1987) uses mappings from the Ising and Potts models to percolation 
according to Kasteleyn and Fortuin (1969) and to Fortuin and Kasteleyn (1972). With 
this procedure the critical slowing-down exponent for the two-dimensional Ising model 
is reduced from 2.125 to 0.35, thus improving computing performance by a factor of 
1000-10000. 

To further improve such an algorithm by suppressing the residual slowing-down 
exponent (0.75 for the three-dimensional Ising model), Kandel et a1 1988, 1989) com- 
bined the Swendsen and Wang (1987) formalism with the multigrid method. Dividing 
the Ising Hamiltonian into one acting in a restricted space governing the largest part of 
the thermodynamics and the remainder, they were able to combine percolation and 
multigrid theory to eliminate completely critical slowing down. Another way was pro- 
posed by Decker (1988). He introduced a multigrid Monte Carlo algorithm for the lattice 
gauge problem, then tested and optimised it using renormalisation group considerations. 

In this communication the implementation of the block-spin formalism, the basicidea 
of Wilson’s renormalisation-group theory (Wilson 1975) is discussed for the multigrid 
Monte Carlo algorithm. Special care has to be taken to handle correctly the effects of 
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saturation, non-linearity and neglected interaction terms in the decimation procedure 
for effective interactions large compared to the critical one. Furthermore, in allowing 
the spins that were frozen in the block at an earlier stage to melt, the interaction energy 
of the spins which formed the block has to be determined such that the free energy 
satisfies renormalisation-group requirements. 

Critical slowing down is due to slow motions with long wavelengths (Kawasaki 1968). 
The multigrid method, (see e.g. Briggs 1987), was first introduced for accelerating the 
solution of linear equations with large sparse matrices. The basic idea of this method is 
to transform large systems into small ones with fast short-wavelength motions. Upon 
increasing the system size, short-wavelength amplitudes are transformed into long- 
wavelength amplitudes and the time scale is extended. This scaling can best be under- 
stood within the context of the renormalisation-group formalism of Wilson (1975) which 
specifies how effective spin interactions have to be recalculated during the trans- 
formation process. 

A picture proposed by Domb (1976) elucidates these phenomena. Close to a critical 
point, two kinds of clusters appear: correlated clusters, containing the physics of the 
phase, transition and critical slowing down, characterised by Fisher’s droplet model 
(Fisher 1967), and so-called ramified clusters. Domb eta1 (1975) and Muller-Krumbhaar 
and Stoll (1976) verified this view with computer simulations, interpreting ramified 
clusters as uncorrelated but connected percolation clusters. This phenomenon of at least 
two different timescales is also readily apparent in the motion picture by Schneider and 
Stoll (1974), where percolation clusters appear and disappear very quickly, together 
with slowly evolving compact clusters. 

The multigrid Monte Carlo method used here follows Decker’s procedure (Decker 
1988). Due to spin-number duplication at each multigrid step it is convenient that the 
system contains N = 2M spins where Mis an integer. The spin arrangements prior to and 
after each step correspond to those in Wilson’s fundamental review (Wilson 1975). His 
renormalisation scheme for the first- and second-nearest neighbour interactions 

Kk = ~ ~ ( 2 K 2 k - i  + Lk-1)  (1) 

L k  = p 2 K i - ,  (2) 

K” = (2p2 + p 4 ) - l  L* = p y 2 p 2  + p4)-2. (3 )  

and 

has the following fixed point: 

For the correction factor p he used the value 21/16. 
The meaning of this fixed point is that all points on a certain line at the ( K ,  L)-plane 

map to its end point ( K * ,  L*) upon iterating formulae (1 )  and (2 )  many times. Such a 
coordinate pair is ( K  = Kl and L = 0); in renormalisation-group theory Kl is the critical 
interaction, but in an approximate implementation KA is smaller than Onsager’s exact 
K, (see Yang 1952), e.g. 

K: = 0.7990 K ,  = 0.3995 l n ( ~  + 1) (4) 
in Wilson’s case (Wilson 1975). 

The following considerations are by no means exact but are based on heuristic 
considerations. Not too close to the critical coupling K, and for K > K,, to correct non- 
linearity and saturation effects and to avoid too large interaction changes in the first 
renormalisation step, only nearest-neighbour interactions are considered in contrast to 
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Wilson (1975). In formulae (1)-(3), Kk and Lk are used as parameters to calculate the 
effective nearest-neighbour interactions. To correct the critical interaction shift (4), KO 
and Lo are given the values 

KO = KK"/K, Lo = KL*/K, (5) 

Ki = K,K,/K*. (6) 

and K[ is calculated accordingly: 

A measure of non-linearities for K > K, and not too close to K, is the deviation between 
the eighth power of the order parameter calculated from Yang's exact formula (Yang 
1952) 

(m(K))' = 1 - 16/(e2K - e-2K)4 

(m,(K))' = 8V5(K - K,).  

K1 = K + [ ( m ( K ; ) ) 8  - (m(K))']/8V5. 

(7)  

(8) 

(9) 

and the linear approximant 

The interaction K1 is therefore calculated using formulae (6)-(8) 

For K-values close to K,, K1 is close to K; , just like in Wilson (1975), but only with one 
interaction parameter. In the next iterations K is replaced by K 1  and the steps between 
(1) and (2) and between (6) and (9) are repeated again. 

A further problem occurs when the new finer lattices are inserted between the old 
sites. The probabilityp(s, = + 1) for new configurations {s,} calculated only on the basis 
of the old spin distributions {s,} and the spin-spin interaction K leads to too small an 
entropy, and equilibrium cannot be reached within a few Monte Carlo cycles. The 
probabilityp(s, = + 1) for having a positive spins, is usually assumed to be 

1 p ( s ;  = +1) = n[Wj(Si = - l + s ;  = + 1) 1 + I-J Wj(Si = - 1+s; = + 1) 
i j 

where W,(s, = - 1 + s, = + 1) in the Metropolis et a1 (1953) transition probability for 
flipping a negative spin s, = - 1 into a positive one s, = + 1, satisfying the detailed 
balance conditions 

W,(s, = - l + s L  = + 1) = (11) 

To bring the entropy closer to its final value and thereby to save computer time between 
updating steps, W,(s, = - 1 + s, = + 1) is replaced by 

Wm,, (s, = - 1 --$ s, = + 1) = e2Ks/(l + qo/2 - Eo/N) - s~ '4  (12) 

with 

6 runs over the nearest neighbours on the old lattice with N spins and qo = 4 is the 
number of such neighbours. Afterwards a Monte Carlo procedure similar to that of 
Metropolis et aZ(1953) with the usual Wj(si = - 1 + si = + 1) in (10) is used to relax the 
spins {s i }  of the old smaller lattice before those of the new inserted lattice {si}. In this 
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Figure 1. Plot for K > K,(KJK = O.%) of 'frozen' block-spins being disensembled during 
the updating process (a) and 512 x 512 single spins in the final system (b). In (a )  the size of 
the 'frozen' block-spins is the picture area divided by their number N = 2'". In an earlystage 
with small M and N the large negative block-spins are light grey, whereas for large M and N 
the negative block-spins are dark grey and in the final state the negative spins are black. To 
visualise theevolution the large light-grey block-spinsappear transparent. In (b) the negative 
spins of the largest system are black. 



Suppressing critical slowing down in ZD king model 6963 

Figure 2. The same as in figure 1, but for K = K,.  



6964 E P Stoll 

heuristic procedure, using the energy Eo of the old smaller lattice in (13), the entropy 
remains nearly constant during updating and only a few Monte Carlo steps per spin are 
needed for relaxation. 

Another more fundamental procedure for the renormalisation steps was proposed 
and tested for smaller systems (32 X 32) spins by Hahn and Streit (1988), but their 
considerations apply only to K < K,. 

To guarantee Markoffian chains for these processes, the lattice is subdivided into 
four sublattices (four are needed to also include next-nearest neighbour interactions). 
The transition probabilities Wj in (11) are calculated, and afterwards all sublattice spins 
are flipped according to these probabilities. However, for very weak interactions or high 
temperatures, the sublattice spins flip at nearly every step, and equilibrium can only be 
reached after very long simulation runs. To obtain fast thermalisation under such 
conditions spin configurations are calculated according to (10) and (11). This implies 
that these sublattice configurations reach the largest entropy in the field of the remaining 
sublattices at each step. 

The results obtained with this updating algorithm have the following properties: 
for interactions K significantly larger than K,, the computed order parameter m(K) ,  
interaction energy E(K)  and energy fluctuation (AE)* are close to Yang’s exact results 
(Yang 1952), but the order parameter fluctuations ( Am)2 are several orders of magnitude 
larger than those calculated from the isothermal susceptibility formula of Essam and 
Fisher (1963). Moreover, these unexpected fluctuations deviate only towards smaller- 
order parameter values. This artefact can be reduced a great dezl, however, by using 
more than four Monte Carlo steps instead of one per spin between two updatings, so 
that local equilibrium is approximately established. For Kclose to K, deviations are then 
small. As is apparent from table 1, the order parameter m(K) is still too large and the 
interaction energy E ( K )  too strong. The specific heat c, and the susceptibility% have the 
correct order of magnitude as theoretical values, but show deviations there too. These 
deviations are not size dependent and indicate the limitations of coarse-to-fine grid 
multilevel updating only. The statistical errors form and E are smaller than the last digit. 
For c, and x, these errors exceed the fluctuations of independent samples (3 and 10%) 
for K > K,, and are again an indication that coarse-to-fine transform only is not sufficient. 
Furthermore, the number of five Monte Carlo steps between two updatings seems to be 
too small. 

Figures 1 and 2 show the system evolution starting from 16 positive spins following 
a multigrid expansion for K > K, and K = K,, respectively. Comparing the square-like 
ensembles of ‘frozen’ negative block-spins in (a) and the ‘molten’ negative spins of the 
final system in (b) ,  it is readily apparent that for K > K, (with only one Monte Carlo step 
per spin between updatings) the clusters nearly retain their rescaled size and position in 
later stages. This may explain the above-mentioned strong order-parameter fluctuations. 
For K = K,, however, the clusters ‘diffuse’ through the system with updating. 

In conclusion, by ensuring local equilibrium in ever-larger subsystems, the multigrid 
Monte Carlo method is found to have a very promising potential to suppress critical 
slowing down. This is demonstrated for the two-dimensional king model. Compared to 
the method of Kandel et aZ(l988,1989), where transformation to percolation is needed 
to ‘freeze’ the spins into block-spins, the application of renormalisation transformations 
with the full Hamiltonian offers a more direct alternative. Nevertheless, the problems 
of neglected interaction terms, non-linearities and saturation effects require further 
theoretical efforts. With further improvements (e.g. according to the suggestions of 
Hahn and Streit (1988) extended to K > K,), and to include fine-to-coarse block-spin 
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Table 1. Monte Carlo simulation results of a two-dimensional Ising system containing 
1024 X 1024 spins averaged over 1000 independent configurations. (The values marked with 
* are results of systems with 4096 X 4096 spins and 100 configurations.) The initial 16 block- 
spins are positive. For the theoretical values of the order parameter mT, the energy ET and 
the specific heat CUT the formulation by Yang (1952) is used. ForXrand K > K, the expression 
by Essam and Fischer (1963) and for K < K, those by Sykes et a1 (1972) are taken into 
account. 

TIT ,  = K J K  m m/mT E / K  E/ET  x/xT co/cuT 

0.80 0.953 
0.90 0.894 
0.95 0.834 
0.98 0.765 
0.99 0.719 
- 0.718 
0.995 0.677 
- 0.676 
0.999 0.592 
- 0.590 
1.00 - 

1.01 - 

1.02 - 

1 .os - 
1.10 - 
1.20 - 

- - 

- - 

- - 

0.999 
0.998 
1.004 
1.025 
1.046 
1.047 
1.075 
1.074 
1.148 
1.145 
- 
- 
- 
- 
- 
- 
- 
- 
- 

-1.851 
-1.713 
-1.609 
-1.524 
- 1.486 
- 1.486 
- 1.462 
-1.462 
-1.435 
-1.435 
-1.421 
-1.421 
-1.345 
-1.344 
-1.301 
-1.301 
-1.207 
-1.097 
-0.944 

0.999 
1.000 
1.004 
1.009 
1.011 
1.011 
1.011 
1.011 
1.009 
1.009 
1.005 
1.004 
0.990 
0.990 
0.988 
0.987 
0.986 
0.989 
0.993 

0.82 1.01 
1.40 1.04 
1.54 1.02 
1.24 0.97 
0.75 0.88 
0.96 1.01* 
0.50 0.88 
1.27 0.96* 
0.20 0.84 
0.23 0.82* 
- - 

L - - 
0.25 0.96 
0.21 0.75* 
0.34 0.95 
0.36 0.81* 
0.52 0.85 
0.63 0.89 
0.74 0.95 

transforms as well, this method will provide a key to solve a variety of problems in 
computational physics otherwise untreatable even with present and planned generations 
of supercomputers. The absence of exact solutions for more complex models will make 
the estimation of correction terms more difficult; non-linearities and saturation effects 
will have to be determined simultaneously at the fine-to-coarse grid transform. 
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